MAN697-TERM PROJECT

"Software Module for Forecasting Time Series by Trend and Seasonality Corrected Exponential Method(Holt-Winter Model)"

Erdem Yildırımer
January 2012

TABLE OF CONTENTS

MAN 697 Term project report 3
I.Introduction 3
2.Background 3
2.I.Time Series Forecasting 3
2.2.Simple Moving Average 3
2.3.What Is Exponential smoothing? 4
2.4.Simple Exponential smoothing 4
2.5.Double Exponential smoothing 4
2.6.Triple Exponential smoothing 5
3.Conclusion 6
3.t.Pseudo Code 6
3.2.Processing Code 6
3.3.Example Inputs(list.txt) 8
3.4.Outputs 9
3.5.Outputs Within Software 9
Bibliography 12

MAN 697 TERM PROJECT REPORT
 "Forecasting Time Series using Trend and Seasonality Corrected Exponential Smoothing Method Software Module"

Erdem Yildırımer
January 2012

I.Introduction

Exponential smoothing is a simple technique used to smooth and forecast a time series without the necessity of fitting a parametric model. It is based on a recursive computing scheme, where the forecasts are updated for each new incoming observation. Exponential smoothing is sometimes considered as a naive prediction method. . The Holt-Winters method, also referred to as double exponential smoothing, is an extension of exponential smoothing designed for trended and seasonal time series. Holt-Winters smoothing is a widely used tool for forecasting business data that contain seasonality, changing trends and seasonal correlation.

The exponential and Holt-Winters techniques are sensitive to usual events or outliers. Outliers affect the forecasting methods in two ways. First, the smoothed values are affected since they depend on the current and past values of the series including the outliers. The second effect of outliers involves the selection of the parameters used in the recursive updating scheme. These parameters regulate the degree of smoothing and are chosen to minimize the sum of squared forecast errors.

2.Background

Beyond static model mainly adaptive models are explained.

2. I. Time SERIES FORECASTING

In statistics, signal processing, econometrics and mathematical finance, a time series is a sequence of data points, measured typically at successive time instants spaced at uniform time intervals. Examples of time series are the daily closing value of the Dow Jones index or the annual flow volume of the Nile River at Aswan. Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values.

2.2.SIMPLE MOVING AVERAGE

In financial applications a simple moving average is the unweighted meanof the previous n data points. However, in science and engineering the mean is normally taken from an equal number of data either side of a central value. This ensures that variations in the mean are aligned with the variations in the data rather than being shifted in time. of the data. Time series forecasting is the use of a model to predict future values based on previously observed values.

2.3.WHAT IS EXPONENTIAL SMOOTHING?

Exponential smoothing is a technique that can be applied to time series data, either to produce smoothed data for presentation, or to make forecasts. The time series data themselves are a sequence of observations. The observed phenomenon may be an essentially random process, or it may be an orderly process. Whereas in the simple moving average the past observations are weighted equally, exponential smoothing assigns exponentially decreasing weights over time.

2.4.SIMPLE EXPONENTIAL SMOOTHING

Exponential smoothing was first suggested by Charles C. Holt in 1957, although the formulation below, which is the one commonly used, is attributed to Brown and is known as "Brown's simple exponential smoothing".

The simplest form of exponential smoothing is given by the formulae:

$$
\begin{aligned}
s_{1} & =x_{0} \\
s_{t} & =\alpha x_{t-1}+(1-\alpha) s_{t-1}=s_{t-1}+\alpha\left(x_{t-1}-s_{t-1}\right), t>1
\end{aligned}
$$

where α is the smoothing factor, and o < α I. In other words, the smoothed statistic st is a simple weighted average of the previous observation $x t_{-1}$ and the previous smoothed statistic st-r. The term smoothingfactor applied to α here is something of a misnomer, as larger values of α actually reduce the level of smoothing, and in the limiting case with $\alpha=\mathrm{r}$ the output series is just the same as the original series (with lag of one time unit). Simple exponential smoothing is easily applied, and it produces a smoothed statistic as soon as two observations are available.

2.5.DOUBLE EXPONENTIAL SMOOTHING

Simple exponential smoothing does not do well when there is a trend in the data. In such situations, several methods were devised under the name "double exponential smoothing".
One method, sometimes referred to as "Holt-Winters double exponential smoothing" works as follows:

Again, the raw data sequence of observations is represented by $\{x \not t\}$, beginning at time $t=0$. We use $\{s t\}$ to represent the smoothed value for time t, and $\{b t\}$ is our best estimate of the trend at time t. The output of the algorithm is now written as $F t+m$, an estimate of the value of x at time $t+m, m>o$ based on the raw data up to time t. Double exponential smoothing is given by the formula :

$$
\begin{aligned}
s_{0} & =x_{0} \\
s_{t} & =\alpha x_{t}+(1-\alpha)\left(s_{t-1}+b_{t-1}\right) \\
b_{t} & =\beta\left(s_{t}-s_{t-1}\right)+(1-\beta) b_{t-1} \\
F_{t+m} & =s_{t}+m b_{t},
\end{aligned}
$$

where α is the data smoothing factor, $0<\alpha<\mathrm{I}, \beta$ is the trend smoothing factor, $0<\beta<\mathrm{I}$, and $b o$ is taken as $\left(x_{\mathrm{n}-\mathrm{I}}-x_{\mathrm{o}}\right) /(n-I)$ for some $n>I$. Note that F_{0} is undefined (there is no estimation for time o), and according to the definition $F_{1}=s_{0}+b_{0}$, which is well defined, thus further values can be evaluated.
2.6.TRIPLE EXPONENTIAL SMOOTHING

Triple exponential smoothing takes into account seasonal changes as well as trends. It was first suggested by Holt's student, Peter Winters, in i960.
The sequence of observations is again represented by $\{x \not t\}$, beginning at time $t=0$. $\{s t\}$ represents the smoothed value of the constant part for time t. $\{b t\}$ represents the sequence of best estimates of the linear trend that are superimposed on the seasonal changes. $\{c t\}$ is the sequence of seasonal correction factors for time $t . L$ is the period of time of one cycle of seasonal change. The output of the algorithm is again written as F_{t+m}, an estimate of the value of x at time $t+m, m>0$ based on the raw data up to time t. Triple exponential smoothing is given by the formulas:

$$
\begin{aligned}
s_{0} & =x_{0} \\
s_{t} & =\alpha \frac{x_{t}}{c_{t-L}}+(1-\alpha) F_{t} \\
b_{t} & =\beta\left(s_{t}-s_{t-1}\right)+(1-\beta) b_{t-1} \\
c_{t} & =\gamma \frac{x_{t}}{s_{t}}+(1-\gamma) c_{t-L} \\
F_{t+m} & =\left(s_{t}+m b_{t}\right) c_{(t+m)}(\bmod L),
\end{aligned}
$$

3.Conclusion

The aim on this study was to create a software module for calculating forecast values.For this Processing Code IDE used. Software accepts i2 user input values from list.txt file and runs on triple exponential method and results are saved to results.txt file. For current version period , α β and γ values can only be changed within the software.

3.I.PSEUDO CODE

Given a timse series, say a complete monthly data for 12 months the Holt-Winters smoothing and forecasting technique is built on following formula :

$$
\begin{aligned}
& \text { Level : } L_{t}=\alpha \frac{\partial t}{S_{i-c}}+(1-\alpha)\left(L_{t-1}\right) \\
& \text { Trend: } T_{t}=\beta\left(L_{t}-L_{t-1}\right)+(1-\beta) T_{t-1} \\
& \text { Seasonal }: S_{t}=\gamma \frac{y t}{L_{t}}+(1-\gamma) * S_{t-c}
\end{aligned}
$$

And predicted smoothed values are computed using the formula:

$$
f_{t+m}=\left(L_{t}+T_{t+m}\right) S_{t-c}
$$

```
3.2.PROCESSING CODE
size(200, 200);
int period = 4;
float alfa = o.I;
float beta = 0.2;
float gamma = 0.I;
String lines[ ] = loadStrings("list.txt");
println("there are " + lines.length + " lines");
int demandLength = lines.length;
float[ ] demand = new float[demandLength];
for (int i=o; i < lines.length; i++) {
    demand[i]=float(lines[i]);
    println(lines[i]);
}
float[ ] indeksler = new float[demandLength];
float[ ] series = new float[demandLength+period];
float[ ] Fseries = new float[demandLength+period];
float[] forecast = new float[period];
println (demandLength);
float periodf=float(period);
println(periodf);
float c = demandLength % periodf;
float periodi=(demand[o]+demand[r]+demand[2]+demand[3])/periodf;
```

```
println("periodr ortlama="+periodi);
float period 2= (demand[4]+demand[5]+demand[6]+demand[7])/periodf;
println("period2 ortalama="+period2);
float bo=(period2-periodr)/periodf;
println("bo initial trend = "+bo);
float a=O;
float b=r;
for(int i=I;i<period+I;i=i+I){a=b+a; b=b+I;}
println("a="+a);
float tbar= a/periodf;
println("tbar="+tbar);
float ao = periodr-(bo*tbar);
println("aO="+ao);
for(int i=o;i<demandLength; i=i+I)
    {
        indeksler[i]= demand[i] / (ao+(i+I)*bo);
        println("index "+i+" "+indeksler[i]);
        println("series "+i+" "+series[i]);
}
for(int i=o;i<period; i=i+I)
    { series[i]=(indeksler[i]+indeksler[i+period])/2;
        println("series "+i+" "+series[i]);
}
float S=o;
for(int i=o;i<period; i=i+I){S = series[i] +S;}
println("S = "+ S);
float tS = period / S;
println("tS = "+ tS);
for(int i=o;i<period; i=i+I) {
    series[i] = series[i] * tS;
        println("series "+i+" "+series[i]);
}
float At = ao;
println("At = "+ At);
float Bt = bo;
println("Bt = "+ Bt);
for(int i = 0 ; i<demandLength ; i=i+I)
{ float Atmi=At;
float Btmı=Bt;
At = alfa* demand[i]/series[i] + (r.o-alfa) * (Atmı + Btmı);
Bt = beta * (At - AtmI) + (I- beta) * Btmr;
series[i+period] =gamma * demand[i] / At + (I.o - gamma) * series[i];
```

```
    Fseries[i]=(ao + bo * (i+1)) * series[i];
    print ("i="+ (i+I) +" ");
    print ("demand="+ demand[i] +" ");
    print ("S=" + series[i] +" ");
    print ("Atmi="+ Atmı +" ");
    print ("BtmI=" + Btmi +" ");
    print ("At=" + At + " ") ;
    print ("Bt=" + Bt +" ");
    print ("series=" + (i+period) + series[i] + " ");
    println ("Fseries="+ Fseries[i]);
}
int[ ] intforecast = new int[period];
String[ ] stforecast = new String[period];
for(int i = 0; i< period ; i=i+i)
    {
    forecastast[i]=(At + Bt** (i+I))* series[demandLength + i];
    intforecast[i] = (int) forecast[i];
    stforecast[i]= Integer.toString(intforecast[i]);
    println ("Forecast = "+ stforecast[i]);
    saveStrings("result.txt", stforecast);
}
3.3.EXAMPLE INPUTS(LIST.TXT)
900 O
I3OOO
23000
24000
IOOOO
I 8 O O O
23000
38000
I2OOO
I3OOO
32000
41OOO
```

3.4.OUTPUTS (RESULT.TXT)

15165
23007
35236
$45 \circ 63$
3.5.OUTPUTS WITHIN SOFTWARE

THEREAREI2 LINES
9 ○ ○
13000
23000
24000
10000
i 8 ○ o o
23000
380 o
I 2000
13000
32000
4 IOOO
I 2
4.0

PERIODI ORTLAMA=I7250.O
PERIOD 2 ORTALAMA=22250.O
Bo INITIAL TREND = I250.O
$\mathrm{A}=\mathrm{I} 0$. O
TBAR $=2.5$
A O=I4I25.O
INDEX O 0.58536583
SERIES o o.o
INDEX I O.78I9549
SERIES I o.o

INDEX 2 I. 2867132
SERIES 2 O.O
INDEX 3 I. 254902
SERIES 3 o. O
INDEX 40.49079755
SERIES 4 O.O
INDEX 50.8323699
SERIES 5 O.O
INDEX 6 I.OO54644
SERIES 6 o.o
INDEX 7 I. 575 I295
SERIES 7 O.O
INDEX 8 O. 4729064
SERIES 8 o. o
INDEX 9 O. 48826292
SERIES 9 O.O
INDEX IO I.I47982 I
SERIES IO O.O
INDEX II I. 4077253
SERIES II O.O
SERIES O O. 53808 I 7
SERIES I O. 8071624
SERIES 2 I.I 460888
SERIES 3 I.4I5OI57
$S=3.9063487$
$\mathrm{TS}=\mathrm{I} .0239742$
SERIES O O. 55098 I76
SERIES I O. 82651347
SERIES 2 I.I735654
SERIES 3 I.4489396
$\mathrm{AT}=14 \mathrm{I} 25 . \mathrm{O}$
$\mathrm{BT}=1250.0$
$\mathrm{I}=\mathrm{I} \quad \mathrm{DEMAND}=9$ O O O. O $\mathrm{S}=0.55$ O-9 8 I 76 A TMMI=I4I25.O
В TMII=I250.O A T=I5470.948 BT=I269. I 897
SERIES $=40.55$ O 98 I76 FSERIES $=847$ I. 345
$\mathrm{I}=2 \mathrm{DEMAND}=130$ OO.O $\quad \mathrm{S}=0.8265 \mathrm{I} 347 \quad$ ATMI=I5470.948 В TMI =I269. I897 A T=I6638.996 BT=I248.96 I 3 SERIES = 50.8265 I $347 \quad$ F SERIES = I 3740.786

 SERIES=6I.I735654 FSERIES=20977.48

SERIES=7I.4489396 FSERIES=277IO.969
$\mathrm{I}=5 \mathrm{DEMAND=I}$ O O O O. O $\mathrm{S}=0.554057 \mathrm{I} \quad$ ATMI=I9O64.336

SERIES = $80.554057 \mathrm{I} \quad$ FSERIE S = II 288 .9I4

В TMI=II82.7375 A T=2I3I5.II7 BT=II95.69I3
SERIES = 90.82I99I8 FSERIES = I 7775.572
 $\mathrm{BTMI=II} 95.69 \mathrm{I} 3 \mathrm{AT}=22203 . \mathrm{OO} 2 \mathrm{BT}=\mathrm{II} 34 . \mathrm{I} 3$
SERIES =IOI.I835692 FSERIES =27O74.I45
$\mathrm{I}=8 \quad \mathrm{DEMAND}=38$ O O O. O $\quad \mathrm{S}=\mathrm{I} .429935 \mathrm{I} \quad$ ATMI=22203.002 ВТМI=II34.I3 AT=23660.883 BT=II98.88OI
SERIES=III.429935I FSERIES=34497.I84
$\mathrm{I}=9 \quad \mathrm{DEMAND}=\mathrm{I} 2$ O O O. O $\quad \mathrm{S}=0.5484829 \quad$ ATMI=23660.883
В TMII=II98.88OI A T=2456I.64 BT=II39.2557
SERIES = I $20.5484829 \quad$ FSERIES = I 39 I 7.754
$\mathrm{I}=\mathrm{IO} \quad \mathrm{DEMAND}=\mathrm{I} 3$ OOO.O $\quad \mathrm{S}=0.8242397 \quad$ ATMIN $=2456 \mathrm{I} .64$

SERIES = I $30.8242397 \quad$ FSERIES $=2$ I $945 \cdot 38$
 В Т MI = $940.68 \quad$ AT=2582I. $672 \quad$ В T=975.2749
SERIES=I4I.I688OI8 FSERIES=3258O.35

$\mathrm{BTMI}=975.2749 \quad \mathrm{AT}=26949.635 \mathrm{BT}=\mathrm{I}$ O O 5.8 I 25
SERIES=I5I.447544I FSERIES=42159.723
FORECAST=I5I65
FORECAST=23007
FORECAST = 35236
FORECAST $=45063$

BIBLIOGRAPHY

-http://en.wikipedia.org/wiki/Main_Page
-http://processing.org/
-Robust forecasting with exponential and Holt-Winters smoothing
Sarah Gelper, Roland Fried and Christophe Croux
-http://itl.nist.gov/div898/handbook/pmc/section4/pmc436.htm
-http://adorio-research.org/wordpress/?p=1230

